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Quanxin Xie3
1Tsinghua University, Beijing, P.R.China
2National Research Nuclear University MEPhI, Moscow, Russia
3Research Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin, P.R.China

The possibility of estimating the minimum total flow in a cascade
with concentrations of a target component given in the product and
waste flows by means of a model match abundance ratio cascade
(MARC) is studied. The parameters required to describe MARC
characteristics are the total number of separation stages, the feed
flow location, and the M� parameter, which is equal to a half-sum
of mass numbers of the target and the supporting components.
Specific research carried out independently in two scientific labs in
China and Russia has demonstrated that the integral parameters
of the MARC, optimized by the M� parameter, are very close to
that of the optimum by the minimum total flow cascade found by
means of numerical optimization. The calculation is performed for
separation of krypton isotopes when the end component 78Kr and
the intermediate component 83Kr are considered to be the targets.
It paves the way to use the optimized MARC parameters for two
purposes: first, for fast and easy evaluation of the real cascade para-
meters and second, as an initial guess in its further direct numerical
optimization, thereby allowing significant savings in computa-
tion time.

Keywords isotope; model cascade; optimum cascade; separation

INTRODUCTION

There is considerable interest in the theoretical and prac-
tical aspects of finding the optimum cascades parameters
for the separation of multicomponent isotope mixtures
with the given concentrations of a target component in
its external flows. As the optimum cascade, we will consider
in this paper a cascade, whose parameters provide the mini-
mum total flow without any other additional conditions
imposed on its internal or external characteristics. The
common principles for optimization of such cascades have
been developed in (1,2). However, there are problems
implementing these in practice due to the necessity of initi-
ating the process with a reasonable initial guess and to

carry out the time-consuming calculation of cascade
parameters on each optimization step. It is noteworthy that
the most difficult problems occur when one needs to calcu-
late the optimum parameters of the cascade with the fixed
values and=or limitations on the withdrawal concen-
trations of a target component. With such cases, it is
reasonable to question the extent of the set of optimum
parameters for the quasi-ideal cascade. This is the analog
of the ideal case for the multicomponent isotope mixture
separation and for which it is possible to find its optimum
parameters (3,7,8,10–12), coincides with that for the opti-
mum cascade. If there is agreement between the estimates
for these cases, as it is in the case of the binary isotope
mixture, then the method can provide a better tool for
the estimation of optimum cascade parameters rather than
a more difficult process of optimization. The study of this
feasibility is just the subject of the present paper.

THEORY

According to the definition, in the quasi-ideal cascade,
the component flow cuts /i are constant over all cascade
stages (3), i.e.,

/i ¼ G0
i=Gi ¼ const;

ð1� /iÞ ¼ G00
i =Gi ¼ const;

i ¼ 1; 2; ::::; Nc;

ð1Þ

where G0
i, G

00
i are the ith component flows in the enriched

and depleted outlet flows from a stage, respectively; Gi is
the ith component flow entering a stage; i is the sequence
number of a component, i¼ 1, 2, . . ., Nc; and Nc is the num-
ber of components in the separating mixture.

The condition equivalent to (1) for existence of a
quasi-ideal cascade is the constancy of head and tail stage
separation factors: c0ik ¼ C0

iCk

C0
k
Ci
¼ const; c00ik ¼ CiC

00
k

CkC
00
i
¼ const,

where k is a number designated as the supporting compo-
nent; Ci, G

0
i, G

00
i are concentrations of the ith component

in the feed, product, and waste flows respectively.
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As already known, the notions of the product and waste
flows in cascades for multicomponent isotope separation
are relative. It is therefore possible to identify ‘‘the light
and heavy ends’’ of a cascade, where the lightest and
heaviest together with other accompanying components
are enriching. The light end withdrawal P and the heavy
end withdrawal W of a quasi-ideal cascade are determined
by the equations as follows (3,4):

P

F
¼

XNc

i¼1

CFi
1� b�NF

i

1� b�NS�1
i

;
W

F
¼

XNc

i¼1

CFi
1� bNS�NFþ1

i

1� bNSþ1
i

The concentrations of the ith component CPi and CWi in
these flows are found by the following formulas:

CPi ¼ CFi
1� b�NF

i

1� b�NS�1
i

�XNc

j¼1

CFj

1� b�NF

j

1� b�NS�1
j

;

CWi ¼ CFi
1� bNS�NFþ1

i

1� bNSþ1
i

�XNc

j¼1

CFj

1� bNS�NFþ1
j

1� bNSþ1
j

;

i ¼ 1; 2; . . . ;NC : ð3Þ

The total flow in the cascade is calculated by the expression

XNS

n¼1

Gn ¼ F
XNC

i¼1

CFi
bi þ 1

ðbi � 1Þð1�bNSþ1
i Þ�

�ðNS �NF þ 1ÞbNSþ1
i þðNS þ 1ÞbNS�NFþ1

i �NF

�

ð4Þ

where Gn is the entering flow at the stage n; F is the cascade
feed flow; NS is the total number of stages in the cascade;
NFis the number of the stage where the feed flow
enters; bi¼ c0ik(c00ik� 1)=(c0ik� 1), i 6¼ k, bk¼ (c00ik� 1)=
(c0ik� 1)c00ik.

For one particular case, a quasi-ideal cascade may have
symmetric separation for the m and k components at all
separation stages. This condition leads to the following
equality for the stage head and tail separation factors:

c0mk ¼ c00mk ¼ ffiffiffiffiffiffiffi
cmk

p
; c0ik 6¼ c00ik; i 6¼ m: ð5Þ

where cmk is an overall separation factor.
In this case, the abundance ratio between the n-th and

k-th components is matched wherever two streams come
together: i.e., at all interstage connections and feed points.
Such a cascade is termed as a matched abundance ratio
cascade, or MARC. It may also be referred to in Russian
language papers as the ‘‘R-cascade’’.

De La Garza et al. are credited with the initial theory of
a MARC for overall separation factors close to unity (5,6).
Later the theory was broadened for the case of arbitrary

separation factors (7,8,10–12). In the case of isotope
separation by molecular-kinetic methods (gas centrifuge,
gas diffusion, thermal diffusion, mass diffusion, etc.), the
stage separation factor for the pair of components can be
expressed as a function of the difference between their mass
numbers in the following equation:

cik ¼ cMk�Mi

0 ; ð6Þ

where Mi and Mk are the mass numbers of the ith and kth
component and c0 is the overall separation factor for unit
mass numbers difference. In this case bi ¼ cM

��Mi

0 , where
M� ¼ (MmþMk)=2.

The case when the overall separation factors at separ-
ation stages are close to unity, the parameter M� that is
equal to the arithmetic mean of the mass numbers of the
key (target) component m and the supporting component
k appeared for the first time in (9). The approach suggested
that it is possible to introduce components, whose concen-
trations are negligible (CFm! 0 and=or CFk! 0), with
mass number M� lying in the range M1<M� <MNc (8).
In this case it is not necessary that either the mth or the
kth component be present in the multicomponent mixture.
As a result, the value of M� can vary continuously in a
range from the lightest to the heaviest masses of a separat-
ing isotope mixture and therefore may be used as a free
parameter. The practical effect of this outcome is that
M� may assume any real value regardless of the actual
mass numbers of the components present. So in practice,
M� is assigned the value that optimizes the performance
of a cascade. Note that sometimes the M� parameter is
referred to as the ‘‘key’’ molar mass (10). The parameter
M�, as a special optimization variable applied in (11),
allows adjustment and analysis of quasi-ideal cascade
properties together with integer type stage number and feed
location. These have been used as the optimization
variables to minimize the total flow of cascades in (12).

CALCULATION

Firstly, we review the process of finding the optimum
parameters for a MARC. There are only 3 variables in this
optimization problem using the minimum total flow in a
MARC as an efficiency criterion. Two of them are integer
variables: the number of stages NS and the feed location NF,
while the key mass number M� is a real variable. In this case
the optimization problem can be summarized as ‘‘Problem 1’’:

min
X

GðNF ;NS;M
�Þ=F ;

s:t: CPtðNF ;NS;M
�Þ � C�

Pt;

CWtðNF ;NS;M
�Þ � C�

Wt;

NF 2 Z;NS 2 Z;M� 2 R: ð7Þ
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where C�
Pt and C�

Wt are the given concentrations of the target
component in the product and waste flows, respectively; Z
establishes the integer set of parameters and R sets up the
real one.

To simplify the solution of the mixed (integer and real)
optimization, two integer variables can be substituted
for the real variables and the simplified problem is now
identified as ‘‘Problem 2’’:

min
X

GðNF ;NS;M
�Þ=F ;

s:t: CPtðNF ;NS;M
�Þ � C�

Pt;

CWtðNF ;NS;M
�Þ � C�

Wt;

NF ;NS;M
� 2 R:

ð8Þ

One further step to facilitate solving the problem under
investigation is to transform the constraints for specified
concentrations into a penalty function. In this way, the prob-
lem becomes a nonlinear optimization without constraints.

In the common case for the system of equations describ-
ing the process of mass transfer in the multicomponent
separating cascade (1,2), the problem of finding its
optimum, by using the minimum total flow as the efficiency
criterion, is formulated as ‘‘Problem 3’’, which was solved
for the first time in (1):

min
X

GðC;NF ;NSÞ=P;
s:t: CPtðC;NF ;NSÞ � C�

Pt;

CWtðC;NF ;NSÞ � C�
Wt;

C¼ fC00
2 ; . . . ;C

00
NS�1g 2 ð0;1ÞNS�2;NF 2 Z;NS 2 Z;

ð9Þ

where G00
n is the concentration of the target component in

the depleted flow of the nth stage.
The analysis demonstrates that if the parameters of the

cascade feed (F,CFj), the values of concentrations of a target
component in the product CPt and waste CWt flows, as well
as the NS and NF parameters are fixed, the quantity of free
parameters of the cascade will be equal to NS� 2. For the
minimum total flow in a cascade as the efficiency criterion,
it has been suggested to use the waste concentrations of the
lightest component C00

1 ðnÞðn ¼ 2;NS � 1Þ in the separating
mixture at the NS� 2 stages as the free NS� 2 parameters.

Hence, ‘‘Problem 3’’ can be rewritten in the problem
statement and renamed as ‘‘Problem 4’’ as in the following:

min
X

GðH;NF ;NSÞ=P;
s:t: CPtðH;NF ;NSÞ � C�

Pt;

CWtðH;NF ;NSÞ � C�
Wt;

H ¼ fh2; . . . ; hNS�1g 2 ð0; 1ÞNS�2;NF 2 Z;NS 2 Z;

ð10Þ

where hn is the cut at the nth stage. Note that searching
for the optimum parameters in the above problem state-
ment is much more complicated than for ‘‘Problem 1’’ or
‘‘Problem 2’’.

For sorting of concentration G00
1 (2), . . ., G

00
1 (NS� 1) in the

optimization procedure, it is expedient to utilize different
methods of nonlinear programming and, if it is necessary,
to combine these with a random searching method (13).
As a whole, the problem of optimization appears to be rela-
tively labor-intensive. In addition, the associated
difficulties increase with the increase of the number of
stages NS in a cascade.

Researchers at MEPhI have followed the optimization
algorithm described in (1). In addition, they have applied
a special method approximating the value of a stage separ-
ation factor to calculate the parameters of a cascade (14).

With respect to ‘‘Problem 4’’ researchers at Tsinghua
University have carried out independently the direct
numerical optimization of the optimum cascade without
the above constraints of a MARC using simulated anneal-
ing (15,16) and the Hooke-Jeeves method (17). In addition,
the Q-iteration method (18) was applied to calculate the
concentration distributions and the optimization variables
NS, NF as well as the flow cuts at the NS� 2 intermediate
stages.

RESULTS AND DISCUSSION

The mixture of krypton isotopes of the natural
abundance (see Table 1) has been chosen as the inlet
concentrations.

The overall separation factor for the unit mass number
difference was fixed at c0¼ 1.1 and did not vary over the
stages of cascades.

In Case 1, the research was devoted to the optimization
of the cascade, enriching the lightest component of the
mixture with the concentrations of 78Kr in the product
and waste flows and satisfying the conditions as follows:
CPt� 20%, CWt� 0.12%. The results of optimization by
M� of the dimensionless total flow in the MARC per-
formed at Tsinghua, where the number of stages is given
as real or integer, are shown in Fig.1.

TABLE 1
Natural composition of the krypton isotopes

Mass number
Natural abundance,
molar concentration

78 0.0035
80 0.0228
82 0.1158
83 0.1149
84 0.5700
86 0.1730
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The zigzag line demonstrates the process of optimiza-
tion of the dimensionless total flow in the cascades with
the integer type of NS and NF (‘‘Problem 1’’). At these
sudden jumps there is a change of NS or NF. The dashed
line corresponds to the real type of NS and NF (‘‘Prob-
lem 2’’). As shown in Fig. 1, the procedure of optimiza-
tion led to the lower minimum in the second case.
However, the two minima in both cases are in relatively
close agreement. It is obvious that the results for the
optimization of a MARC with the real stage numbers
can be used directly in numerical optimization of the
optimum cascade parameters. Since evaluation of the
total flow can be performed relatively easily by using for-
mulas (2)–(6) for any given NS and NF (either integer or
real) values, the time consumed for optimization becomes
negligibly small.

The comparison of the parameters obtained by two
independent research groups in the optimization of a
MARC (‘‘Problem 1’’ and ‘‘Problem 2’’) and the optimum
cascade (‘‘Problem 3’’ and ‘‘Problem 4’’) for the end
component is presented in Table 2.

In Table 2, the withdrawal concentrations in a MARC
with integer stage number NS (i.e., the first case) are

CPt� 20.0% and CWt� 0.117% < 0.12%, while the
withdrawal concentrations of the following three cases
are equal to the predefined values. It is reasonable that
the estimation of the total flow in the first case is larger.
The best (in the sense of the minimum total flow) case,
i.e., the fourth one, was obtained in the following way.
The set of parameters from the optimized MARC was
used as the initial guess in the optimization procedure
for the optimum cascade. In order to avoid dealing with
the mixed variables, the optimization was carried out
separately by using H as variable but specifying the
number of stages and the feed location around the values
obtained from the optimization of MARC. Table 3 gives
the parameters NS and NF of those optimum cascades
and the corresponding total flows for the fixed product
and waste concentrations of the target component, which
have been obtained by means of the numerical optimiza-
tion at Tsinghua.

The optimization resulted in the minimum total flow of
about 2785, the corresponding number of stages is 24, and
the feed location is 4. So as one can see, the set of the para-
meters for the optimized MARC gives a good prediction
for that of the optimum cascade.

In Case 2, the optimization was carried out for the
intermediate target component 83Kr where its concentra-
tions in the withdrawal flows are required to satisfy the
following conditions: CPt� 20%, CWt� 5%. The concen-
tration of the 84Kr isotope in the inlet is high. Therefore,
in order to enrich the intermediate component 83Kr, it
must be separated from the 84Kr isotope. For this pur-
pose the target and supporting components for the
match in a MARC should be 83Kr and 84Kr, and so
the key mass number should be equal to M� ¼ 83.5.
The effect of varying M� and seeking for the best NS

and NF to find the minimum total flow is seen in
Fig. 2. Again, the zigzag and dashed lines correspond
in the optimization to the integer type of NS and NF

and real type, respectively.
The values of the dimensionless total flow in the opti-

mum cascade and the corresponding optimized MARC
are shown in Tables 4 and 5 as follows:

Similar to the previous case, the total flow in a model
cascade for the separation of the intermediate component

FIG. 1. Dependence of the dimensionless total flow RG=P versus the key

mass number M� in case 1. (DM� ¼ 0.005 for integer type of NS and NF).

TABLE 2
The optimum parameters for enrichment of the 78Kr isotope

The cascade type (M�)opt NS NF (
P

SG=P)min

MARC (Problem 1, integer NS) (Tsinghua) 80.2946 (� 80.3) 24 5 2828.5
MARC (Problem 2, real NS) (MEPhI, Tianjin institute) 80.5 25.576 (� 26) 4.5268 (� 5) 2791.2
Optimum cascade (Problem 3, MEPhI) – 24 4 2786.4
Optimum cascade (Problem 4, Tsinghua) – 24 4 2784.7
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optimized by varying the parameter M� is also very close to
the value in the optimum cascade. The results of numerical
optimization show that the number of stages and the feed
location resulting from the optimization of the correspond-
ing MARC are also close to that of the cascades with the
minimum total flow.

CONCLUSION

Finding the optimum parameters of long cascades for
separation of multicomponent isotope mixtures by iterative
mixed real-integer optimization is a difficult and
time-consuming problem, especially when a good initial
guess and proper bounds for optimization variables are
unknown.

Two independent research groups, using different
approaches to calculate and to optimize cascade para-
meters, verified that the optimized parameters of a MARC
provide needed feedback in terms of the minimum total
flow, the number of stages, and the feed location in the
optimum cascade. It is therefore suggested that the method
provides an easier approach to evaluate optimum cascade
parameters and to find a good initial guess for its further
direct optimization.
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